skip to main content


Search for: All records

Creators/Authors contains: "Brooks, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2024
  2. ABSTRACT

    We present the first comprehensive halo occupation distribution (HOD) analysis of the Dark Energy Spectroscopic Instrument (DESI) One-Percent Survey luminous red galaxy (LRG) and Quasi Stellar Object (QSO) samples. We constrain the HOD of each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r < 32 h−1 Mpc in a set of fiducial redshift bins. We use AbacusSummit cubic boxes at Planck 2018 cosmology as model templates and forward model galaxy clustering with the AbacusHOD package. We achieve good fits with a standard HOD model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of $f_\mathrm{sat} = 11\pm 1~{y{\ \mathrm{per\,cent}}}$, a mean halo mass of $\log _{10}\overline{M}_h/M_\odot =13.40^{+0.02}_{-0.02}$, and a linear bias of $b_\mathrm{lin} = 1.93_{-0.04}^{+0.06}$. For LRGs in 0.6 < z < 0.8, we find $f_\mathrm{sat}=14\pm 1~{{\ \mathrm{per\,cent}}}$, $\log _{10}\overline{M}_h/M_\odot =13.24^{+0.02}_{-0.02}$, and $b_\mathrm{lin}=2.08_{-0.03}^{+0.03}$. For QSOs, we infer $f_\mathrm{sat}=3^{+8}_{-2}\mathrm{per\,cent}$, $\log _{10}\overline{M}_h/M_\odot = 12.65^{+0.09}_{-0.04}$, and $b_\mathrm{lin} = 2.63_{-0.26}^{+0.37}$ in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high fidelity galaxy mocks, forming the basis of systematic tests for DESI Y1 cosmological analyses. We also study the redshift-evolution of the DESI LRG sample from z = 0.4 up to z = 1.1, revealling significant and interesting trends in mean halo mass, linear bias, and satellite fraction.

     
    more » « less
  3. ABSTRACT

    Accurate quasar classifications and redshift measurements are increasingly important to precision cosmology experiments. Broad absorption line (BAL) features are present in 15–20 per cent of all quasars, and these features can introduce systematic redshift errors, and in extreme cases produce misclassifications. We quantitatively investigate the impact of BAL features on quasar classifications and redshift measurements with synthetic spectra that were designed to match observations by the Dark Energy Spectroscopic Instrument (DESI) survey. Over the course of 5 yr, DESI aims to measure spectra for 40 million galaxies and quasars, including nearly three million quasars. Our synthetic quasar spectra match the signal-to-noise ratio and redshift distributions of the first year of DESI observations, and include the same synthetic quasar spectra both with and without BAL features. We demonstrate that masking the locations of the BAL features decreases the redshift errors by about 1 per cent and reduces the number of catastrophic redshift errors by about 80 per cent. We conclude that identifying and masking BAL troughs should be a standard part of the redshift determination step for DESI and other large-scale spectroscopic surveys of quasars.

     
    more » « less
  4. Abstract

    We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) fromz= 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package,galtab, which enables the rapid, precise prediction of CiC for any HOD model available inhalotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies inz∼ 0.15 samples with limiting absolute magnitudeMr< −20.0 andMr< −20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighterMr< −21.0 sample atz∼ 0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold atz∼ 0.15. We provide our constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3.

     
    more » « less
  5. ABSTRACT

    We estimate the redshift-dependent, anisotropic clustering signal in the Dark Energy Spectroscopic Instrument (DESI) Year 1 Survey created by tidal alignments of Luminous Red Galaxies (LRGs) and a selection-induced galaxy orientation bias. To this end, we measured the correlation between LRG shapes and the tidal field with DESI’s Year 1 redshifts, as traced by LRGs and Emission-Line Galaxies. We also estimate the galaxy orientation bias of LRGs caused by DESI’s aperture-based selection, and find it to increase by a factor of seven between redshifts 0.4−1.1 due to redder, fainter galaxies falling closer to DESI’s imaging selection cuts. These effects combine to dampen measurements of the quadrupole of the correlation function (ξ2) caused by structure growth on scales of 10–80 h−1 Mpc by about 0.15 per cent for low redshifts (0.4 < z < 0.6) and 0.8 per cent for high (0.8 < z < 1.1), a significant fraction of DESI’s error budget. We provide estimates of the ξ2 signal created by intrinsic alignments that can be used to correct this effect, which is necessary to meet DESI’s forecasted precision on measuring the growth rate of structure. While imaging quality varies across DESI’s footprint, we find no significant difference in this effect between imaging regions in the Legacy Imaging Survey.

     
    more » « less
  6. The design of heterogeneous systems that include domain specific accelerators is a challenging and time-consuming process. While taking into account area constraints, designers must decide which parts of an application to accelerate in hardware and which to leave in software. Moreover, applications in domains such as Extended Reality (XR) offer opportunities for various forms of parallel execution, including loop level, task level and pipeline parallelism. To assist the design process and expose every possible level of parallelism, we present Trireme , a fully automated tool-chain that explores multiple levels of parallelism and produces domain specific accelerator designs and configurations that maximize performance, given an area budget. FPGA SoCs were used as target platforms and Catapult HLS [7] was used to synthesize RTL using a commercial 12nm FinFET technology. Experiments on demanding benchmarks from the XR domain revealed a speedup of up to 20 ×, as well as a speedup of up to 37 × for smaller applications, compared to software-only implementations. 
    more » « less
  7. Large language models have substantially advanced nuance and context understanding in natural language processing (NLP), further fueling the growth of intelligent conversational interfaces and virtual assistants. However, their hefty computational and memory demands make them potentially expensive to deploy on cloudless edge platforms with strict latency and energy requirements. For example, an inference pass using the state-of-the-art BERT-base model must serially traverse through 12 computationally intensive transformer layers, each layer containing 12 parallel attention heads whose outputs concatenate to drive a large feed-forward network. To reduce computation latency, several algorithmic optimizations have been proposed, e.g., a recent algorithm dynamically matches linguistic complexity with model sizes via entropy-based early exit. Deploying such transformer models on edge platforms requires careful co-design and optimizations from algorithms to circuits, where energy consumption is a key design consideration. 
    more » « less
  8. ABSTRACT

    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line-emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the non-recurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines consistent with power-law decay. The remaining two objects had been classified as active galactic nuclei (AGNs) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.

     
    more » « less